Practical experiences with granular activated carbon (GAC) at the Rietvlei Water Treatment Plant

نویسندگان

  • Michele Clements
  • Johannes Haarhoff
چکیده

The Rietvlei Water Treatment Plant was extended with a granular activated carbon (GAC) filtration system after an exhaustive series of tests, which were started in 1994. Upon commissioning towards the middle of 1999, a year of close monitoring followed to measure the GAC performance at full-scale. After verification that the GAC does indeed ensure a high quality product under all conditions, the emphasis shifted to the optimisation of the GAC handling and regeneration system. Frequently moving the entire GAC inventory from the filters to an off-site regeneration plant and back requires significant operational effort and contributes a major part of the total cost of the GAC system. A number of systematic investigations were carried out in response to a number of practical questions that arose at Rietvlei. The first part of the study was directed towards tracking and quantifying the GAC on and off site. The main findings were that 10.0% of the GAC is lost from the filter during backwashing (0.3%) and removal of GAC from the filter for regeneration (9.7%). The sump does not trap all this GAC and 2.3% of the total inventory is lost to the river. Inserting a sieve at the outlet of the sump can eliminate this loss. A further 80.3% of the GAC in a filter is removed for regeneration, of which 18.7% is lost during the regeneration process. The minimising of this loss can only be achieved through the optimisation of the regeneration process, which falls within the domain of the regeneration contractor. The second part of the study was directed at the behaviour of the GAC whilst within the filter bed. The porosity and sphericity were determined by laboratory tests and calculations. The porosity was found to be 0.69 for the 12 x 40 size carbon and 0.66 for the 8 x 30 size carbon. By using a calibrated bed expansion model, bed expansion could be calculated at 9°C and 23°C for the two carbon gradings; the maximum temperature range experienced at Rietvlei. The main finding of this part of the study was that the average available freeboard is 650 mm for the 12 x 40 grading and 430 mm for the 8 x 30 grading, and therefore no GAC should wash over the weir at all during backwashing. The third part of the study measured the physical changes of the GAC found at different points in the GAC cycle. The main findings were that the small fraction of GAC washed out of the bed during backwashing and removal has a finer grading, higher apparent density and lower adsorption capacity than the GAC in the filter bed. There seems to be no marked attrition of the carbon or generation of fines during the removal and transport of the GAC to the regeneration plant. After regeneration, there was a 7.0% decrease in apparent density and a 30.0% increase in adsorption capacity.The final part of the study correlated the adsorption capacity of the GAC with its time in use as well as UV254 removal. After regeneration, UV254 removal begins at approximately 20.0% and declines to 14.0% after 400 d of operation, and to 10.0% after 600 d. After regeneration, the iodine number begins at approximately 800 g/mg, declines to 600 g/mg after 400 d of operation, and to 500 g/mg after 600 d.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonium removal in granular activated carbon up-flow submerged reactors containing native bacterial consortium

Free ammonium in industries wastewater could be one of the worst toxic contaminants of aquatic life if diluted in water. Biological nitrogen removal (BNR) is the most common method for removing ammonium and nitrate from wastewater. Attached growth and suspended growth are the main BNR systems. The aim of the present work was to study the treatment of petrochemical wastewater (ammonium and nitra...

متن کامل

Chemical Regeneration of Exhausted Granular Activated Carbon Used in Citric Acid Fermentation Solution Decoloration

An improved chemical regeneration of the granular activated carbon (GAC) exhausted by the color (pigments and pollutants) from citric acid fermentation solution (CAF) was investigated. In the experiments, improved means were adopted to advance the traditional chemical regenerating method and the adsorption capacity of the first time renewed GAC is 103% of original GAC. Using oxidan...

متن کامل

Experimental Study and Adsorption Modeling of COD Reduction by Activated Carbon for Wastewater Treatment of Oil Refinery

Application of Granular Activated Carbon (GAC) in adsorption process has been studied for the advanced treatment of municipal and industrial wastewater. Because of entering poisonous compounds such as furfural, phenol and sulfides into the oily wastewater of Tehran refinery, biological aeration basins of wastewater treatment unit may not have the desired performance of COD reductio...

متن کامل

Nitrate Removal from Aqueous Solutions Using Granular Activated Carbon Modified with Iron Nanoparticles (RESEARCH NOTE)

Nitrate contamination of water resources and the growing concentration of nitrate endanger human health and the environment and considering its reduction strategies from water resources is important. The aim of this study was to investigate the possibility of removal of nitrate from aqueous solutions using granular activated carbon from grape wood coated with iron nanoparticles. The results sho...

متن کامل

Using Microwave Radiation to Recover Granular Activated Carbon Exposed to Toluene Vapor

This paper describes laboratory scale experiments examining the impact of microwave irradiation on the Granular Activated Carbon (GAC) exposed to toluene, a common organic vapor frequently released into work environment as well as outdoor. A stream containing 300 ppm toluene was supplied and passed through the granular activated carbon. The saturated adsorbent was placed in a quartz glass r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004